Local-global Principles in Circle Packings

نویسندگان

  • ELENA FUCHS
  • KATHERINE E. STANGE
  • XIN ZHANG
چکیده

We generalize work of Bourgain-Kontorovich [6] and Zhang [31], proving an almost local-to-global property for the curvatures of certain circle packings, to a large class of Kleinian groups. Specifically, we associate in a natural way an infinite family of integral packings of circles to any Kleinian group A ≤ PSL2(K) satisfying certain conditions, where K is an imaginary quadratic field, and show that the curvatures of the circles in any such packing satisfy an almost local-to-global principle. A key ingredient in the proof of this is that A possesses a spectral gap property, which we prove for any infinite-covolume, geometrically finite, Zariski dense Kleinian group in PSL2(OK) containing a Zariski dense subgroup of PSL2(Z).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Local-global Principle for Integral Apollonian 3-circle Packings

In this paper we study the integral properties of Apollonian-3 circle packings, which are variants of the standard Apollonian circle packings. Specifically, we study the reduction theory, formulate a local-global conjecture, and prove a density one version of this conjecture. Along the way, we prove a uniform spectral gap for the congruence towers of the symmetry group.

متن کامل

The Apollonian structure of Bianchi groups

We study the orbit of R under the Bianchi group PSL2(OK), where K is an imaginary quadratic field. The orbit SK , called a Schmidt arrangement, is a geometric realisation, as an intricate circle packing, of the arithmetic of K. We define certain natural subgroups whose orbits generalise Apollonian circle packings, and show that SK , considered with orientations, is a disjoint union of all of th...

متن کامل

Circle Packings in the Unit Disc

A Bl-packing is a (branched) circle packing that “properly covers” the unit disc. We establish some fundamental properties of such packings. We give necessary and sufficient conditions for their existence, prove their uniqueness, and show that their underlying surfaces, known as carriers, are quasiconformally equivalent to surfaces of classical Blaschke products. We also extend the approximatio...

متن کامل

General Ellipse Packings in an Optimized Circle Using Embedded Lagrange Multipliers

The general ellipse packing problem is to find a non-overlapping arrangement of n ellipses with (in principle) arbitrary size and orientation parameters inside a given type of container set. Here we consider the general ellipse packing problem with respect to an optimized circle container with minimal radius. Following the review of selected topical literature, we introduce a new model formulat...

متن کامل

0 Conformally symmetric circle packings . A generalization of Doyle spirals

Circle packings (and more generally patterns) as discrete analogs of conformal mappings is a fast developing field of research on the border of analysis and geometry. Recent progress was initiated by Thurston’s idea [T] about the approximation of the Riemann mapping by circle packings. The corresponding convergence was proven by Rodin and Sullivan [RS]; many additional connections with analytic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017